The following chapters/sessions refer to "General Chemistry" by Darrell Ebbing and Steven D. Gammon. The 9th, 10th, and 11th editions all have the same chapter/section numbers and titles. In each chapter, the authors organize the sections in a few parts and nicely give a subtitle for each part (the subtitles are included after the section numbers for your reference). The topics in blue are the ones proposed in Dr. Lavelle's syllabus, and they are merged into Dr. Ruiz-Silva's syllabus. As the Committee strongly recommended, "Appendix A Mathematical Skills" is added at the beginning.

Week	Chapter	Sections and Topics
Week #1	Appendix A Mathematical	A.1 Scientific (exponential) notation
(perhaps	Skills	A.2 Logarithms
"mathematical		A.3 Algebraic operations and graphing
skills" can be	Ch. 1 Chemistry and	Sec. 1.1-1.4 An introduction to chemistry
covered in TA	Measurement	Sec. 1.5-1.8 Physical measurements
discussions?)		SI units; dimensional analysis; significant figures.
	Ch. 2 Atoms, Molecules, and	Sec. 2.1-2.5 Atomic theory and atomic structure
	Ions	atoms (protons, neutrons, electrons, isotopes);
		atomic number; atomic weight.
		Sec. 2.6-2.8 Chemical substances: formulas and
		names
		Sec. 2.9-2.10 Chemical reactions: equations
		conservation of matter; balancing non-redox
		chemical reactions.
Week #2	Ch. 3 Calculations with	Sec. 3.1-3.2 Mass and moles of substance
	Chemical Formulas and	molar mass.
	Equations	Sec. 3.3-3.5 Determining chemical formulas
	1	determining molecular formulas.
		Sec. 3.6-3.8 Stoichiometry: quantitative relations in
		chemical reactions
		limiting reactant calculations.
Week #3	Ch. 4 Chemical Reactions	Sec. 4.1-4.2 Ions in aqueous solution
		solutions and solvation.
		Sec. 4.3-4.6 Types of chemical reactions
		(precipitation, acid-base, and redox)
		oxidation number and state; balancing redox
		reactions.
		Sec. 4.7-4.8 Working with solutions
		molarity calculations
		Sec. 4.9-4.10 Quantitative analysis (gravimetric
		analysis and volumetric analysis)
Week #4 and	Ch. 5 The Gaseous State	Sec. 5.1-5.5 Gas laws
Week #5		ideal gas law ($PV = nRT$).
		Sec. 5.6-5.8 Kinetic-molecular theory
	Ch. 6 Thermochemistry	Sec. 6.1-6.6 Understanding heats of reactions
		conservation of energy; internal energy; heat and
		work as forms of energy; heat of reaction
		(exothermic & endothermic); enthalpy is a state
		function and its relation to heat of reaction at
		constant pressure; concept of a thermodynamic
		system; calculating pV work.
		Sec. 6.7-6.9 Using heats of reaction

1		r	
			Hess's law; using standard enthalpies of known
			reactions or bond enthalpies or standard enthalpies
			of formation to calculate an unknown reaction
			enthalpy (please note that "bond enthalpy" is also
			discussed in sec. 9.11 "bond energy").
	Week #6	Ch. 7 Quantum Theory of the	Sec. 7.1-7.3 Light waves, photons, and the Bohr
		Atoms	Theory
			properties of light & electrons with calculations
			involving $c = \lambda v$ and $E = hv$.
			Sec. 7.4-7.5 Quantum mechanics and quantum
			numbers
			s-, p-, and d- orbitals; shells.
		Ch. 8 Electron Configuration	Sec. 8.1-8.4 Electron structure of atoms
		and Periodicity	electron configurations: core and valence electrons.
			Sec. 8 5-8 7 Periodicity of the elements
			trends in the periodic table
	Week #7	Ch 9 Ionic and Covalent	Sec. 9.1-9.3 Ionic bonds
		Bonding	ionic bonds
		Donaing	Sec. 9.4-9.11 Covalent bonds
			covalent bonds: Lewis structures: duet and octet
			rules of electrons: resonance structures: formal
			charge: electronegativity: bond lengths & strengths
	Week #8	Ch. 10 Molecular Geometry	Sec. 10 1-10 4 Molecular geometry and directional
		and Chemical Bonding	bonding
		Theory	dipole moments: molecular shape: hybridization
		1	(sp. sp2, sp3); torsional rigidity (or lack) of bond
			types.
			Sec. 10.5-10.7 Molecular orbital theory
	Week #9	Ch. 11 State of Matter:	Sec. 11.1 Comparison of gases, liquids, and solids
	(perhaps	Liquids and Solids	Sec. 11.2-11.3 Changes of state
	instructors can	Enquitas and Sonias	Sec. 11 4-11 5 Liquid state
	select the topics		Sec. 11.6-11.10 Solid state
	or shorten the	Ch. 12 Solutions	Sec. 12.1-12.3 Solution formation
	contents?)	Cil. 12 Solutions	solutions and solvation (more in-depth than 4.1-
	contents.)		solutions and solvation (more in-depth than 4.1^{-1}
			Sec. 12.4-12.8 Colligative properties
			ideal solution
			Sec. 12.9 Colloid formation
	Week #10	Ch. 15 Acids and Bases	Properties & structures of inorganic & organic
	(perhans	Ch. 16 Acid-Base Equilibria	acids/bases: Bronsted & Lewis acids/bases:
	instructors can	Ch. 10 Meld-Dase Equilibria	conjugate acids/bases: acidity/basicity constants
	select the topics		and pK/pK_1 ; calculating pH and pOH of aqueous
	or shorten the		solutions containing strong or weak acids/bases
	contents?)		(Please note: these topics are discussed in details in
ļ	contents?)		Ch. 15 and Ch. 16: they are also briefly
			C_{11} and C_{11} introduced in Sec. 4.4)
			Calculating equilibrium constants & equilibrium
			concentrations for liquid phase reactions (use soids
			and bases as examples for aqueous/liquid phase
			and bases as examples for aqueous/figure phase
l		1	reactions), law of mass action.

Topics not covered in the above Ch. 1-12, 15, and 16:

Reactions at equilibrium; calculating equilibrium constants & equilibrium concentrations for gaseous phase reactions (use ideal gas law for gas phase reactions). These topics are discussed in Ch. 14.

Definition of entropy as a state function; calculate changes in work, heat, enthalpy, energy, and entropy; calculate entropy changes of chemical reactions; calculate Gibbs free energy of a reaction knowing, the enthalpy and entropy change of a reaction, or the equilibrium constant; reaction spontaneity (if time mention 1st, 2nd, and 3rd laws of thermodynamics); using redox reactions to calculate thermodynamic changes. These topics are discussed in Ch. 18 and Ch. 19.

Rate of a reaction; reaction order; 0th, 1st, and 2nd order rate laws to calculate concentrations and rate constants (if time discuss half-life). These topics are discussed in Ch. 13.